首页|基于深度学习与图像分割的舰船目标检测研究

基于深度学习与图像分割的舰船目标检测研究

扫码查看
针对舰船目标检测领域的目标尺度变化、形状复杂多变和背景干扰等问题,通过融合深度学习技术,结合卷积神经网络和可微分二值化技术,提出了一种新的舰船目标检测方法.该方法采用了编码-解码结构的舰船目标检测网络,引入了可变形卷积和可微分二值化函数,以提高自适应性和检测性能.在网络结构中,嵌入可变形卷积的设计有助于更有效地捕捉舰船目标的特征,以适应复杂场景中目标尺度和形状的多变性.可微分二值化技术可保留目标边界的精确信息,提高对目标形状和轮廓的敏感性.在训练过程中,采用了有监督训练阈值图的方法,通过联合优化确定了每个位置的自适应阈值,减少了后处理的复杂步骤.通过在HRSC2016和DOTA数据集上进行检测试验,验证了所提方法的检测精度.
Research on Ship Target Detection Based on Deep Learning and Image Segmentation
A new ship target detection method is proposed by integrating deep learning techniques,convolutional neural networks,and differentiable binarization techniques to address the issues of target scale changes,complex shapes,and background interference in the field of ship target detection.This method adopts an encoding decoding structure for ship target detection network,introducing deformable convolution and differentiable binarization functions to improve adaptability and detection performance.In network architecture,the design of embedding deformable convolutions helps to more effectively capture the features of ship targets,adapting to the variability of target scale and shape in complex scenes.The differentiable binarization technique can retain accurate information about the target boundary and improve sensitivity to the shape and contour of the target.During the training process,the supervised training threshold graph method was adopted,and the adaptive threshold for each position was determined through joint optimization,reducing the complexity of post-processing steps.The detection accuracy of the proposed method was verified through detection experiments on the HRSC2016 and DOTA datasets.

deep learningCNNship target detectiondeformable convolution

丁士强、刘明刚、尚嵩、梁玉峰

展开 >

海军航空大学,山东烟台 264000

深度学习 卷积神经网络 舰船目标检测 可变形卷积

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(11)