自动化应用2024,Vol.65Issue(11) :52-54,57.DOI:10.19769/j.zdhy.2024.11.014

基于联邦学习的轴承故障检测与诊断

Bearing Fault Detection and Diagnosis Based on Federated Learning

齐枫
自动化应用2024,Vol.65Issue(11) :52-54,57.DOI:10.19769/j.zdhy.2024.11.014

基于联邦学习的轴承故障检测与诊断

Bearing Fault Detection and Diagnosis Based on Federated Learning

齐枫1
扫码查看

作者信息

  • 1. 中钢招标有限责任公司,北京 100080
  • 折叠

摘要

首先通过研究轴承故障的理论基础,介绍传统的振动信号分析方法,总结轴承故障算法缺陷,在此基础上进行卷积神经网络(CNN)的学习以用于模型训练、联邦学习;然后通过FedAvg算法将服务机接收的各客户端模型聚合,得到全局模型参数来检测轴承故障;最后进行验证,实现基于联邦学习的轴承故障检测.经大量实验论证,该算法准确有效.

Abstract

Firstly,by studying the theoretical basis of bearing fault,the traditional vibration signal analysis method is introduced,and the defects of bearing fault algorithm are summarized.On this basis,convolutional neural network(CNN)is studied for model training and federated learning.Then,the FedAvg algorithm is used to aggregate the client models received by the server to obtain the global model parameters for bearing fault detection.Finally,it is verified that the bearing fault detection based on Federated learning is realized.A large number of experiments show that the algorithm is accurate and effective.

关键词

轴承故障/联邦学习/卷积神经网络

Key words

bearing fault/federated learning/CNN

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
段落导航相关论文