首页|基于改进YOLOv5的交通标志检测方法

基于改进YOLOv5的交通标志检测方法

扫码查看
针对自然场景中交通标志检测模型存在准确率低、识别效果差等问题,以YOLOv5 为基础网络进行改进.首先,引入卷积注意力模块,获取更多细节特征;其次,采用BiFPN作为Neck层中的特征融合网络,以更好地实现多尺度特征融合;最后,采用深度超参数化卷积DO-Conv代替网络中部分传统卷积,增加网络可学习的参数数量.结果表明,与原始YOLOv5相比,改进后的YOLOv5网络模型检测精度提升了1.2%,检测速度提升了1.4 fps,该模型能更快速、精准地识别交通标志.
Traffic Sign Detection Model Based on Improved YOLOv5
To address the issues of low accuracy and poor recognition performance of traffic sign detection models in natural scenes,YOLOv5 is used as the basic network for improvement.Firstly,a convolutional attention module is introduced to obtain more detailed features.Secondly,BiFPN is used as the feature fusion network in the Neck layer to better achieve multi-scale feature fusion.Finally,deep hyperparametric convolution DO Conv is used instead of some traditional convolutions in the network to increase the number of learnable parameters.The results show that compared with the original YOLOv5,the improved YOLOv5 network model has improved detection accuracy by 1.2%and detection speed by 1.4 fps.This model can recognize traffic signs more quickly and accurately.

target detectionYOLOv5 modeltraffic sign detectionattention mechanism

安宁博、姚兰、吴思东

展开 >

成都信息工程大学自动化学院,四川成都 610225

目标检测 YOLOv5模型 交通标志检测 注意力机制

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(11)