首页|基于长短时记忆神经网络的非侵入式电力负荷辨识方法

基于长短时记忆神经网络的非侵入式电力负荷辨识方法

扫码查看
常规的非侵入式电力负荷辨识方法忽略了暂态特征对负荷辨识的影响,为此,设计了基于长短时记忆神经网络的非侵入式电力负荷辨识方法.提取非侵入式电力负荷特征,采集电流、电压、功率信号,获取暂态负荷特征与稳态负荷特征.基于长短时记忆神经网络辨识电力负荷类别,利用时间特征细分负荷事件,划分负荷事件的区间,得到负荷类型数量,使负荷事件与负荷序列相匹配,从而实现电力负荷的精准辨识.采用对比实验验证了该方法的辨识效果更佳.
Non-Invasive Power Load Identification Method Based on Long Short-Term Memory Neural Network
The conventional non-intrusive power load identification method ignores the influence of transient features on load identification.Therefore,a non-intrusive power load identification method based on long short-term memory neural network was designed.Extract non-intrusive power load characteristics,collect current,voltage,and power signals,and obtain transient load characteristics and steady-state load characteristics.Based on the long short-term memory neural network to identify the power load category,the time characteristics are used to subdivide the load events,divide the interval of the load events,obtain the number of load types,and match the load events with the load sequence,so as to achieve the accurate identification of power loads.Comparative experiments are used to verify that the identification effect of the proposed method is better.

long short-time memory neural networknon-invasivepower loadidentification method

洪亮、朱玲玲、詹文、周亚娟、兰越前

展开 >

国网福建电力有限公司,福建福州 350003

清华大学能源互联网创新研究院,北京 100084

长短时记忆神经网络 非侵入式 电力负荷 辨识方法

国网福建省电力有限公司科技项目资助

52130022001A

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(12)