首页|基于BFGO-CNN-LSTM的EV充电数据异常诊断研究

基于BFGO-CNN-LSTM的EV充电数据异常诊断研究

扫码查看
为应对各种扰动对电动汽车(EV)在充电过程中因故障识别精度而造成的负面影响,提出一种创新的BFGO-CNN-LSTM模型,对EV充电数据中的异常部分进行精确诊断.通过该方式,模型能充分利用EV充电数据的时空特征,极大提升EV充电数据异常检测的准确性和运算效率.
Research on Diagnosis of Electric Vehicle Charging Data Anomalies Based on BFGO-CNN-LSTM
In order to cope with the negative impact of various perturbations on fault id entification accuracy during electric vehicle(EV)charging,an innovative BFGO-CNN-LSTM model is proposed to accurately diagnose the abnormal parts of EV charging data.In this way,the model is able to fully utilize the spatio-temporal characteristics of EV charging data,which greatly enhances the accuracy and computational efficiency of EV charging data anomaly detection.

data anomaly diagnosisCNNlong and short-term memory neural networkEVoptimization algorithm

王秋实

展开 >

国网铁岭供电公司,辽宁铁岭 112000

数据异常诊断 卷积神经网络 长短时记忆神经网络 电动汽车 优化算法

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(12)