首页|基于多维监测数据的环网柜过热故障预测研究

基于多维监测数据的环网柜过热故障预测研究

扫码查看
随着配电网现代化的发展,作为其核心设备,环网柜过热故障的准确预测对保障供电系统的稳定运行至关重要.因此,提出一种基于多维监测数据的环网柜过热故障预测方法,旨在提升故障预警的准确性和及时性.通过引入温升、温差和相对温差等判别指标,结合深度学习技术,特别是基于长短期记忆(LSTM)网络的温度预测模型,克服了传统基于温度阈值的诊断方法的局限性.采用MATLAB平台进行模型仿真,所建模型融合历史温度、电流和环境温度等相关数据维度,提高了预测的精确度与稳定性.结果表明,与传统的BP神经网络相比,LSTM网络在环网柜过热故障趋势预测上具有更小的误差和更强的适应能力,提高了故障预测的准确性,为电网故障诊断和维护工作提供了科学依据,进一步保障了供电系统的可靠性.
Research on Predicting Overheating Faults in Ring Main Unit Based on Multidimensional Monitoring Data
With the development of modern distribution networks,as the core equipment of the ring main unit,accurate prediction of overheating faults is crucial for ensuring the stable operation of the power supply system.Therefore,this paper proposes a method for predicting overheating faults in ring main units based on multidimensional monitoring data,aiming to improve the accuracy and timeliness of fault warning.By introducing discrimination indicators such as temperature rise,temperature difference,and relative temperature difference,combined with deep learning techniques,especially temperature prediction models based on long short term memory(LSTM)networks,the limitations of traditional temperature threshold based diagnostic methods are overcome.Using MATLAB platform for model simulation,the constructed model integrates multiple relevant data dimensions such as historical temperature,current,and environmental temperature,improving the accuracy and stability of prediction.The results show that compared with traditional BP neural networks,LSTM network has lower error and stronger adaptability in the prediction of overheating fault trend,which improves the accuracy of fault prediction,providing scientific basis for power grid fault diagnosis and maintenance work,and further ensuring the reliability of the power supply system.

multidimensional monitoring dataring main unitoverheat fault prediction

李明、孟伟、丁勇

展开 >

淄博齐林电力工程有限公司周村分公司,山东淄博 255300

多维监测数据 环网柜 过热故障预测

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(12)