首页|基于机器视觉的机器人避障算法研究

基于机器视觉的机器人避障算法研究

扫码查看
为了解决机器人在自主导航中避障能力有限的问题,采用YOLOv5s目标检测模型来实现障碍物视觉感知.随后,将视觉感知算法获取的障碍物二维坐标和深度相机的深度值结合,形成实时导航信息.在避障方面,提出了自适应修正导航矢量场算法,以实现自主导航功能.通过在基于AirSim的仿真平台上的验证,结果显示避障成功率可达94%,表明该算法能够增强机器人的感知能力并提高其避碰性能.
Research on Robot Obstacle Avoidance Algorithm Based on Machine Vision
In order to solve the problem of limited obstacle avoidance ability in robot autonomous navigation,the YOLOv5s object detection model is adopted to achieve visual perception of obstacles.Subsequently,the two-dimensional coordinates of obstacles obtained by the visual perception algorithm are combined with the depth values of the depth camera to form real-time navigation information.In terms of obstacle avoidance,an adapted modified guidance vector field algorithm is proposed to achieve autonomous navigation function.Through validation on an AirSim-based simulation platform,the results show that the success rate of obstacle avoidance can reach 94%,indicating that the algorithm can enhance the robot's perception ability and improve the collision avoidance performance.

machine visionobstacle avoidanceAirSimYOLOv5sadapted modified guidance vector field

蓝仁稳

展开 >

广东海洋大学电子与信息工程学院,广东 湛江 524088

机器视觉 避障 AirSim YOLOv5s 自适应修正导航矢量场

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(13)