首页|基于深度学习的机械表面缺陷检测

基于深度学习的机械表面缺陷检测

扫码查看
提出了一种基于深度学习的机械表面缺陷检测方法,并在MVTec AD数据集上进行了实证验证.首先,设计了一套基于机器视觉的机械表面检测系统,为深度学习模型提供高质量的输入数据.其次,深入研究了图像增强技术,通过亮度调整、对比度增强和直方图均衡化等操作,提升图像质量,以更准确捕捉表面缺陷的细微特征.在缺陷检测方法方面,采用了YOLOv5模型.最后,利用MVTec AD数据集进行了一系列实验,验证了所提方法在真实工业场景中的有效性和泛化能力.结果表明,模型在正常图像上表现出良好的误检避免能力,对真实缺陷区域具有较高的识别准确度.
Mechanical Surface Defect Detection Based on Deep Learning
This paper proposes a deep learning based mechanical surface defect detection method and conducts empirical verification on the MVTec AD dataset.Firstly,a machine vision based mechanical surface detection system was designed to provide high-quality input data for deep learning models.Secondly,in-depth research was conducted on image enhancement techniques,which improved image quality through operations such as brightness adjustment,contrast enhancement,and histogram equalization to more accurately capture the subtle features of surface defects.In terms of defect detection methods,the YOLOv5 model was adopted.Finally,a series of experiments were conducted using the MVTec AD dataset to validate the effectiveness and generalization ability of the proposed method in real-world industrial scenarios.The results show that the model exhibits good misdetection avoidance ability on normal images and has high recognition accuracy for real defect areas.

deep learningimage enhancementYOLOv5 modelsurface detection

耿伟涛

展开 >

郑州工业应用技术学院,河南 郑州 451100

深度学习 图像增强 YOLOv5模型 表面检测

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(13)