首页|基于机器视觉的煤矿井下传送带故障自动检测研究

基于机器视觉的煤矿井下传送带故障自动检测研究

扫码查看
现有的煤矿井下传送带故障检测方法偏移比例较大,导致检测准确程度低.为此,研究了基于机器视觉的煤矿井下传送带故障自动检测.针对煤矿井下输送机传送带,选用深度相机采集高质量的彩色图像,并运用HDR方式提亮煤矿井下传送带图像,恢复较暗部分的细节,同时对采集图像进行伽马校正来增强图像的对比度.通过应用仿射变换,逐帧拼接输送带表面特征图像,反映图像间的运动关系.运用拼接后的传送带表面特征图像,分析传送带宽度大小,获得其偏移比例并进行偏移判断,从而完成传送带故障的自动检测.实验结果表明,实验组的偏移比例与实际值之间的误差较小,使得图像直线拟合效果较优;通过统计视频样本A-F的正确帧数,计算的检测准确度均在98%以上,达到了更为精准的检测效果,提高了故障检测的实时性.
Research on Automatic Fault Detection of Coal Mine Underground Conveyor Belt Based on Machine Vision
The large deviation ratio of existing methods for detecting faults in coal mine underground conveyor belts,resulting in low detection accuracy.Therefore,this paper studies the automatic detection of faults in coal mine underground conveyor belts based on machine vision.For coal mine underground conveyor belts,a depth camera is selected to capture high-quality color images,and HDR is used to brighten the images of coal mine underground conveyor belts,restore the details of darker parts,and perform gamma correction on the collected images to enhance the contrast of the images.By applying affine transformation,the surface feature images of the conveyor belt are concatenated frame by frame to reflect the motion relationships between the images.Using the surface feature images of the spliced conveyor belt,analyze the width of the conveyor belt,obtain its offset ratio,and perform offset judgment to complete automatic detection of conveyor belt faults.The experimental results show that the error between the offset ratio of the experimental group and the actual value is small,resulting in better image straight line fitting effect.By statistically analyzing the correct frame rates of video samples A-F,the calculated detection accuracy is above 98%,achieving more accurate detection results and improving the real-time performance of fault detection.

machine visionconveyor beltfault detectioncoal mine underground

袁晶丽

展开 >

煤炭科学技术研究院有限公司,北京 100013

煤炭智能开采与岩层控制全国重点实验室,北京 100013

煤矿应急避险技术装备工程研究中心,北京 100013

北京市煤矿安全工程技术研究中心,北京 100013

展开 >

机器视觉 传送带 故障检测 煤矿井下

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(13)