首页|基于强化迁移学习的继电保护设备信息异常自动识别方法

基于强化迁移学习的继电保护设备信息异常自动识别方法

扫码查看
现有信息异常自动识别方法灵敏度较低,F值也较低,为此,提出基于强化迁移学习的继电保护设备信息异常自动识别方法.感知继电保护设备不同工况下的信息并对其进行预处理,结合专家经验采用"异常现象-异常演化路径-异常原因-异常解决措施"的逻辑过程建立信息异常识别知识库,通过强化迁移学习对知识库中的知识进行学习,提取设备信息异常特征,识别设备信息异常,实现基于强化迁移学习的继电保护设备信息异常自动识别.实验证明,本文方法灵敏度可达96%以上,F值可达97%以上,能够实现对继电保护设备信息异常精准自动识别.
Automatic Identification Method of Relay Protection Equipment Based on Enhanced Transfer Learning
The current method for automatic identification of information anomalies has low sensitivity and F-value.Therefore,a reinforcement transfer learning based automatic identification method for information anomalies in relay protection equipment is proposed.Perceive the information of relay protection equipment under different working conditions and preprocess it.Based on expert experience,use the logical process of"abnormal phenomenon abnormal evolution path abnormal cause abnormal solution"to establish an information anomaly recognition knowledge base.Through reinforcement transfer learning,learn the knowledge in knowledge base,extract abnormal features of equipment information,identify equipment information anomalies,and achieve automatic recognition of relay protection equipment information anomalies based on reinforcement transfer learning.Experimental results show that the sensitivity of the method proposed in this article can reach over 96%,and the F-value can reach over 97%.It can achieve accurate automatic identification of abnormal information in relay protection equipment.

enhanced transfer learningrelay protection equipmentinformation abnormalityautomatic identificationexpert experienceknowledge base

魏振江、孙乐

展开 >

国网汉中供电公司,陕西 汉中 723000

陕西中烟有限责任公司汉中卷烟厂,陕西 汉中 723000

强化迁移学习 继电保护设备 信息异常 自动识别 专家经验 知识库

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(13)