首页|基于巡检机器人的智能煤矿机电设备故障自动诊断方法研究

基于巡检机器人的智能煤矿机电设备故障自动诊断方法研究

扫码查看
针对煤矿机电设备故障自动诊断中存在的问题,提出了一种基于巡检机器人的智能诊断方法.该方法通过巡检机器人携带的多传感器设备,采集煤矿机电设备的数据,基于深度学习算法,对经过预处理后的数据进行特征提取和融合,实现设备故障的精确诊断.在实验阶段,以煤矿开采中常见的提升机和压风机为对象进行诊断性能测试.结果表明,基于巡检机器人的故障自动诊断方法在诊断准确性上具有显著优势,可为煤矿机电设备的故障诊断提供技术支撑,为煤矿生产的安全和稳定运行提供有力保障.
Research on Automatic Fault Diagnosis Method of Intelligent Coal Mine Electrical and Mechanical Equipment Based on Inspection Robot
A smart diagnosis method based on inspection robots is proposed to address the problems in automatic diagnosis of faults in coal mine electrical and mechanical equipment.This method collects data from coal mine electrical and mechanical equipment through multi-sensor devices carried by inspection robots.Based on deep learning algorithms,the preprocessed data is feature extracted and fused to achieve accurate diagnosis of equipment faults.In the experimental stage,diagnostic performance tests will be conducted on commonly used hoists and fans in coal mining.The results show that the fault automatic diagnosis method based on inspection robots has significant advantages in diagnostic accuracy,which can provide technical support for the fault diagnosis of coal mine electrical and mechanical equipment and provide strong guarantees for the safe and stable operation of coal mine production.

coal mineelectrical and mechanical equipmentinspection robotdeep learning

崔少青

展开 >

山西煤炭运销集团晋中有限公司,山西 晋中 030600

煤矿 机电设备 巡检机器人 深度学习

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(15)