自动化应用2024,Vol.65Issue(15) :136-138,142.DOI:10.19769/j.zdhy.2024.15.037

基于改进的DE固废热裂解釜多模型预测控制策略

Multi-Model Predictive Control Strategy Based on Improved DE Solid Waste Pyrolysis Kettle

刘安东 张军 姜云
自动化应用2024,Vol.65Issue(15) :136-138,142.DOI:10.19769/j.zdhy.2024.15.037

基于改进的DE固废热裂解釜多模型预测控制策略

Multi-Model Predictive Control Strategy Based on Improved DE Solid Waste Pyrolysis Kettle

刘安东 1张军 1姜云1
扫码查看

作者信息

  • 1. 上海电力大学自动化工程学院,上海 200090
  • 折叠

摘要

由于裂解釜温度控制存在非线性、大滞后、时变等特性,基于改进差分进化(IDE)算法,采用一种固废多模型温度预测控制策略,通过软切换器应对固废热裂解釜中的温度变化.同时,运用改进DE算法和模型预测控制(MPC)来更新模型参数,以最小化控制误差和确保系统稳定性.该控制策略能适应不同工作条件下的温度动态.结果表明,与现有算法相比,所提算法在抑制扰动方面有明显优势,跟踪平均百分比误差提升0.11%,均方根误差降低0.0268.

Abstract

Due to the nonlinearity,large lag,and time-varying characteristics of temperature control in the cracking kettle,an improved differential evolution(IDE)algorithm is used to adopt a solid waste multi model temperature prediction control strategy.A soft switch is used to cope with temperature changes in the solid waste thermal cracking kettle.Meanwhile,the improved DE algorithm and model predictive control(MPC)are utilized to update the model parameters,in order to minimize control errors and ensure system stability.This control strategy can adapt to temperature dynamics under different working conditions.The results show that compared with existing algorithms,the proposed algorithm has significant advantages in suppressing disturbances,with a tracking average percentage error increase of 0.11%and a root mean square error decrease of 0.0268.

关键词

改进差分进化/多模型预测控制/抑制扰动

Key words

improved differential evolution/multi-model predictive control/disturbance suppression

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
段落导航相关论文