首页|基于大数据技术的500 kV电网监控数据冗余研究

基于大数据技术的500 kV电网监控数据冗余研究

扫码查看
随着电网监控系统数据量的日益增长,数据冗余成为影响电网稳定性的关键挑战.通过深入分析500 kV高压电网监控数据特征,设计并实现了一种自编码器网络结构,用于有效学习数据的压缩表示,从而优化数据存储和处理流程.此外,为了加速模型的推理速度并适应端设备的资源限制,提出了高效的模型轻量化策略.结果表明,所提方法在减少数据存储需求和提升数据处理效率方面取得了显著成效,同时保持了监控数据的完整性和系统的快速响应能力.
Research on Monitoring Data Redundancy of 500 kV Power Grid Based on Big Data Technology
With the increasing amount of data in the power grid monitoring system,data redundancy has become a key challenge affecting the stability of the power grid.Through in-depth analysis of the monitoring data characteristics of the 500 kV high-voltage power grid,an autoencoder network structure was designed and implemented to effectively learn the compressed representation of data,thereby optimizing the data storage and processing flow.In addition,an efficient model lightweighting strategy has been proposed to accelerate the inference speed of the model and adapt to the resource constraints of end devices.The results indicate that the proposed method has achieved significant results in reducing data storage requirements and improving data processing efficiency,while maintaining the integrity of monitoring data and the system's rapid response capability.

data redundancybig data technologyautoencoder

张四杰、李晓东、路亚恒

展开 >

国网河南省电力公司超高压公司,河南 郑州 450000

数据冗余 大数据技术 自编码器

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(16)