首页|基于RBF神经网络的脱硫优化控制系统

基于RBF神经网络的脱硫优化控制系统

扫码查看
针对火力发电厂脱硫岛系统存在滞后性、不稳定的缺点,改善原系统PID控制不能满足非线性系统控制要求的现状,结合RBF神经网络算法的优点,提出了基于RBF神经网络脱硫优化的控制系统的应用.通过对机组运行工况划分、重要数据分析及pH目标寻优等程序,在历史数据中深挖有价值的数据,找到与当前实时运行工况近似的目标值及运行参数,可为脱硫岛优化运行提供指导性建议,最终实现节能降耗.
Optimization Control System for Desulfurization Based on RBF Neural Network
In response to the shortcomings of hysteresis and instability in the desulfurization island system of thermal power plants,the improvement of the original system PID control cannot meet the requirements of nonlinear system control.Combining the advantages of RBF neural network algorithm,an application of a control system based on RBF neural network desulfurization optimization is proposed.By dividing the operating conditions of the unit,analyzing important data,and optimizing the pH target program,valuable data can be deeply excavated from historical data to find target values and operating parameters that are similar to the current real-time operating conditions.This can provide guiding suggestions for optimizing the operation of the desulfurization island and ultimately achieve energy conservation and consumption reduction.

RBF neural networkcondition partitioningpH goal optimization

赵杰、管志超、王经纬、韩家欣

展开 >

晋控电力塔山发电山西有限公司,山西 大同 100070

RBF神经网络 工况划分 pH目标寻优

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(16)