自动化应用2024,Vol.65Issue(16) :142-146,149.DOI:10.19769/j.zdhy.2024.16.044

基于迁移学习的电能表运行状态评估方法

Method for Evaluating Operational Status of Electric Energy Meters Based on Transfer Learning

刘月骁 杨广华 李娜 史鹏博 陆翔宇 李蕊
自动化应用2024,Vol.65Issue(16) :142-146,149.DOI:10.19769/j.zdhy.2024.16.044

基于迁移学习的电能表运行状态评估方法

Method for Evaluating Operational Status of Electric Energy Meters Based on Transfer Learning

刘月骁 1杨广华 1李娜 1史鹏博 1陆翔宇 1李蕊1
扫码查看

作者信息

  • 1. 国网北京市电力公司客户服务中心(营销中心、计量中心),北京 102600
  • 折叠

摘要

针对智能电能表运行状态评估维度单一、现场状态数据不平衡的问题,构建了一种基于迁移学习的电能表运行状态评估方法.首先,通过实验仿真获取不同运行状态下的电能表运行数据、环境数据以及属性数据,采用Adaboost算法构建运行特征、环境特征、属性特征与运行状态之间的关联模型;其次,通过迁移学习将实验室建立的Adaboost评估模型进行适应性调整,以适用于评估电能表现场实际运行状态.结果表明,所提方法在智能电能表状态识别的查准率、查全率以及调和分数等指标上均具有较好的识别性能.

Abstract

A transfer learning based method for evaluating the operational status of smart energy meters has been developed to address the issues of single dimensions and imbalanced on-site state data.Firstly,the operational data,environmental data,and attribute data of the electric energy meter under different operating states are obtained through experimental simulation.The Adaboost algorithm is used to construct the correlation model between operational features,environmental features,attribute features,and operational states.Secondly,the Adaboost evaluation model established in the laboratory is adaptively adjusted through transfer learning to be suitable for evaluating the actual operating status of electric energy meters on site.The results show that the proposed method has good recognition performance in precision,recall,and harmonic score indicators of intelligent energy meter state recognition.

关键词

智能电能表/状态评估/迁移学习/Adaboost算法

Key words

smart energy meter/state assessment/transfer learning/Adaboost algorithm

引用本文复制引用

基金项目

国网科技项目(52020123000F)

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
参考文献量18
段落导航相关论文