自动化应用2024,Vol.65Issue(16) :207-211.DOI:10.19769/j.zdhy.2024.16.062

基于机器视觉的刀具磨损状态检测

Detection of Cutting Tools Wear Status Based on Machine Vision

辛宇 张士军
自动化应用2024,Vol.65Issue(16) :207-211.DOI:10.19769/j.zdhy.2024.16.062

基于机器视觉的刀具磨损状态检测

Detection of Cutting Tools Wear Status Based on Machine Vision

辛宇 1张士军1
扫码查看

作者信息

  • 1. 山东建筑大学机电工程学院,山东 济南 250100
  • 折叠

摘要

随着制造行业的发展,刀具的磨损状态对加工质量和效率具有重要影响.传感器检测方法存在检测环境受限、精度难以保障的问题,而基于机器视觉的磨损状态检测方法能够通过图像处理技术实现对刀具磨损状态的自动化检测和情况分析.提出了一种使用机器视觉来检测刀具磨损状态的方法.首先,使用高斯滤波去除刀具灰度图中的干扰和噪点;然后,通过二值化和阈值分割等操作进一步减少干扰;最后,通过轮廓填充等操作成功识别到刀具的磨损状态.该方法具有高稳定性和鲁棒性,对于提高制造行业的刀具检测自动化程度和优化生产效率具有重要意义.

Abstract

With the development of the manufacturing industry,the wear state of cutting tools has a significant impact on machining quality and efficiency.The use of sensor detection methods has the problems of limited detection environment and difficult accuracy guarantee,while machine vision based wear state detection methods can achieve automated detection and situation analysis of tool wear state through image processing technology.This paper proposes a method of using machine vision to detect tool wear status.Firstly,Gaussian filtering is used to remove interference and noise from the tool grayscale image.Then,further reduce interference through operations such as binarization and threshold segmentation.Finally,the wear status of the tool was successfully identified through contour filling and other operations.This method has high stability and robustness,which is of great significance for improving the automation level of tool detection and optimizing production efficiency in the manufacturing industry.

关键词

机器视觉/磨损检测/刀具自动化

Key words

machine vision/wear detection/cutting tools automation

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
参考文献量8
段落导航相关论文