首页|改进K-means聚类的噪声污染监测网络模型的设计与研究

改进K-means聚类的噪声污染监测网络模型的设计与研究

扫码查看
为有效优化城市噪声监测网络,最小化监测点数量,提出了一种改进K-means聚类的噪声污染监测网络模型.通过计算轮廓系数以改进K值,从而改进K-means聚类算法,建立K-means聚类模型,并根据聚类结果的类质心位置确定监测点位置坐标,得到优化的监测网络布局.结果表明,该模型在保证监测结果准确性和全面性的同时,有效减少了监测点的数量,从而降低了监测成本.
Design and Research of Noise Pollution Monitoring Network Model with Improved K-means Clustering
In order to optimize the urban noise monitoring network effectively and minimize the number of monitoring points,this paper proposes a noise pollution monitoring network model with improved K-means clustering.By calculating the contour coefficient to improve the K value,improving the K-means clustering algorithm,and establishing the K-means clustering model,the position coordinates of the monitoring points are determined according to the position of the class centroid of the clustering results,so as to obtain the optimized monitoring network layout.The results show that the model not only guarantees the accuracy and comprehensiveness of the monitoring results,but also effectively reduces the number of monitoring points and the redundancy of monitoring costs.

noise pollutionK-means clusteringmonitoring network model

王慧、王凯文、吴彦昕、温雨

展开 >

山西财经大学实验实训中心,山西 太原 030006

太原师范学院计算机科学与技术学院,山西 晋中 030619

噪声污染 K-means聚类 监测网络模型

山西省教育厅山西省高等学校一般性教学改革创新项目

J20230676

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(16)
  • 3