自动化应用2024,Vol.65Issue(17) :32-34,38.DOI:10.19769/j.zdhy.2024.17.009

基于YOLOv8的驾驶员疲劳检测

Driver Fatigue Detection Based on YOLOv8

邹晓越 宫永刚
自动化应用2024,Vol.65Issue(17) :32-34,38.DOI:10.19769/j.zdhy.2024.17.009

基于YOLOv8的驾驶员疲劳检测

Driver Fatigue Detection Based on YOLOv8

邹晓越 1宫永刚1
扫码查看

作者信息

  • 1. 山东交通学院工程机械学院,山东 济南 250357
  • 折叠

摘要

交通事故通常是由驾驶员的疲劳驾驶和不规范驾驶造成的.针对驾驶员疲劳驾驶的问题,应在驾驶员疲劳时进行及时的检测预警,以消除安全隐患.目前,深度学习检测算法已较为成熟,采用YOLOv8检测模型进行目标检测是解决该问题的有效手段.基于YOLOv8n的模型,在C2f中引入采用DilatedReparamBlock修改的DWR模块,并在主干网络上加入MLCA注意力机制.使用改进后模型检测的实验数据表明,与原模型YOLOv8n相比,YOLOv8n-C2f_DWR_DRB-MLCA模型的mAP@0.5和mAP@0.5-0.95分别为88.1%和39.5%,对比原模型分别提高了4.1%和1.6%,有效提升了对驾驶员在驾驶过程中因疲劳产生的闭眼与打哈欠检测的速度和精度.

Abstract

Traffic accidents are usually caused by the driver's fatigue driving and non-standard driving.In response to the problem of driver fatigue driving,timely detection and warning should be carried out when the driver is fatigued to eliminate safety hazards.At present,deep learning detection algorithms are relatively mature,and using the YOLOv8 detection model for object detection is an effective means to solve this problem.Based on the YOLOv8n model,a DWR module modified with DilatedRepamBlock is introduced in C2f,and MLCA attention mechanism is added to the backbone network.The experimental data using the improved model detection shows that compared with the original model YOLOv8n,the YOLOv8n-C2f_DWR_DRB-MLCA model has mAP@0.5 and mAP@0.5-0.95 They are 88.1%and 39.5%respectively,which are 4.1%and 1.6%higher than the original model,effectively improving the speed and accuracy of detecting driver's eye closure and yawning caused by fatigue during driving.

关键词

疲劳驾驶/YOLOv8检测模型/疲劳检测

Key words

fatigue driving/YOLOv8 detection model/fatigue detection

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
段落导航相关论文