首页|基于小波神经网络的变电站线路故障自动检测方法

基于小波神经网络的变电站线路故障自动检测方法

扫码查看
现有方法难以捕捉变电站线路故障信号中的细微变化,导致与实际结果偏差较大.为此,提出了基于小波神经网络的变电站线路故障自动检测方法.首先,基于小波包分解,获取变电站线路不同频段上的能量分布和突变特征等信息;其次,构建小波神经网络故障检测模型,将小波包分解得到的特征信息作为模型的输入,建立故障信号与故障类型或程度之间的映射关系;最后,反复训练模型,检测变电站线路故障信号.结果表明,该设计方法的检测结果贴合实际结果,提高了故障检测的精度.
Automatic Detection Method for Substation Line Fault Based on Wavelet Neural Network
The existing methods are difficult to capture subtle changes in substation line fault signals,resulting in significant deviations from actual results.Therefore,a method for automatic detection of substation line faults based on wavelet neural network is proposed.Firstly,based on wavelet packet decomposition,information such as energy distribution and mutation characteristics of substation lines in different frequency bands are obtained.Secondly,a wavelet neural network fault detection model is constructed,and the feature information obtained from wavelet packet decomposition is used as the input of the model to establish the mapping relationship between fault signals and fault types or degrees.Finally,repeatedly train the model to detect fault signals in substation lines.The results indicate that the detection results of this design method are in line with actual results,improving the accuracy of fault detection.

wavelet neural networksubstationline faultautomatic detection method

胡宗义、徐佳

展开 >

南瑞集团(国网电力科学研究院)有限公司,江苏 南京 210000

小波神经网络 变电站 线路故障 自动检测方法

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(17)