首页|多智能物资运送小车协同控制的任务分配

多智能物资运送小车协同控制的任务分配

扫码查看
针对进一步提升物资运送智能车的使用效率及多智能体协作任务分配不合理问题,提出一种基于区域划分拍卖算法的多车协同控制的任务分配策略.首先,对已知环境根据任务的密集程度进行区域划分,实现全局环境的任务处理.其次,按任务类型划分不同的处理方式,即局部任务通过使用优化的拍卖算法处理任务,进而提高多车协同的使用效率;全局跨区域任务使用二层框架完成点对点任务处理.最后,在全局已知的环境下进一步仿真算法,对比打击类型无人机的任务分配算法.结果表明,该算法的性能对智能车使用效率更高、任务的承载能力更强、任务分配策略更合理,在对多车协同控制解决任务分配的问题上能高效实施,简化复杂的任务分配过程.
Task Allocation for Cooperative Control of Multi-Intelligent Material Delivery Vehicles
To further improve the efficiency of material transportation intelligent vehicles and address the problem of unreasonable task allocation in multi-agent collaboration,a task allocation strategy for multi vehicle collaborative control based on regional partitioning auction algorithm is proposed.Firstly,the known environment is divided into regions based on the density of tasks to achieve task processing in the global environment.Secondly,different processing methods are divided according to task types.Local tasks are processed using optimized auction algorithms to improve the efficiency of multi vehicle collaboration.Global cross regional tasks use a two-layer framework to complete point-to-point task processing.Finally,further simulate the algorithm in a globally known environment and compare the task allocation algorithm for strike type unmanned aerial vehicles.The results show that the performance of this algorithm is more efficient in the use of intelligent vehicles,with stronger task carrying capacity and more reasonable task allocation strategies.It can be efficiently implemented in solving task allocation problems for multi vehicle collaborative control,simplifying complex task allocation processes.

multi-vehicle schedulingtask allocationarea partitioningauction algorithmtwo-layer framework

高方坤、唐宏伟、邓嘉鑫、丁祥、罗佳强、王军权

展开 >

邵阳学院机械与能源工程学院,湖南 邵阳 422000

多电源地区电网运行与控制湖南省重点实验室,湖南 邵阳 422000

多车调度 任务分配 区域划分 拍卖算法 二层框架

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(17)