首页|发电机组行星齿轮与轴承故障特征分析与诊断

发电机组行星齿轮与轴承故障特征分析与诊断

扫码查看
针对发电机组故障种类多、辨识难度大的问题,通过分析发电机组振动加速度信号特征,得到了齿轮故障与轴承故障引起的振动信号特征规律,在此基础上,提出了一种结合特征提取技术和深度神经网络的多故障诊断方法.结果表明,这2种故障会使信号的时域和频域振幅显著增大,且振动信号的第一主频从6.0 Hz增加到73.0 Hz;齿轮故障主要影响6.3~16 Hz范围内的加速度级,而轴承故障则显著影响630~10 000 Hz范围的加速度级;此外,特征提取可提升7.33%的准确率,故障诊断方法在测试集中准确率达到98.33%.本研究成果对发电机组故障诊断与检修具有重要意义.
Feature Analysis and Diagnosis of Planetary Gear and Bearing Fault in Generator Sets
In response to the problem of multiple types of faults and difficulty in identification in generator sets,the vibration acceleration signal characteristics of generator sets were analyzed to obtain the vibration signal characteristic laws caused by gear faults and bearing faults.Based on this,a multi fault diagnosis method combining feature extraction technology and deep neural networks was proposed.The results indicate that these two types of faults significantly increase the time-domain and frequency-domain amplitudes of the signal,and the first dominant frequency of the vibration signal increases from 6.0 Hz to 73.0 Hz.Gear faults mainly affect acceleration levels within the range of 6.3~16 Hz,while bearing faults significantly affect acceleration levels within the range of 630~10 000 Hz.In addition,feature extraction can improve accuracy by 7.33%,and the fault diagnosis method achieves an accuracy of 98.33%in the test set.The research results are of great significance for fault diagnosis and maintenance of generator sets.

generator setsfault diagnosisfeature extractiondeep neural network

李飞洋

展开 >

国网上海市电力公司市北供电公司,上海 200072

发电机组 故障诊断 特征提取 深度神经网络

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(18)