首页|基于YOLOv5的轻量化苹果叶片病害检测

基于YOLOv5的轻量化苹果叶片病害检测

扫码查看
为提高苹果叶片病害识别在实际应用中的精确率,提出了一种基于YOLOv5的苹果叶片病害识别模型.为保证模型在实际果园移动设备上的流畅运行,在YOLOv5中引入Ghost模块和Ghost BottleNeck结构进行轻量化.更换损失函数为Alpha-IOU损失函数,提升模型的检测精度.在苹果叶片病害数据集上进行验证,与原始YOLOv5算法相比,基于改进YOLOv5算法的mAP@0.5提高了1.3%,mAP@0.5:0.95提高了1.4%,参数量下降了5.2 GFLOPs.结果表明,提出的改进YOLOv5算法更能满足实际情况中对苹果叶片病害检测的要求.
Lightweight Apple Leaf Disease Detection Based on YOLOv5
To improve the accuracy of apple leaf disease recognition in practical applications,a YOLOv5 based apple leaf disease recognition model is proposed.To ensure the smooth operation of the model on actual orchard mobile devices,the Ghost module and Ghost BottleNeck structure are introduced in YOLOv5 for lightweighting.Replace the loss function with Alpha-IOU loss function to improve the detection accuracy of the model.Verified on the apple leaf disease dataset,compared with the original YOLOv5 algorithm,based on the improved YOLOv5 algorithm mAP@0.5 increased by 1.3%,mAP@0.5:0.95 increased by 1.4%,while the parameter count decreased by 5.2 GFLOPs.The results indicate that the proposed improved YOLOv5 algorithm can better meet the requirements of apple leaf disease detection in practical situations.

apple leaf diseaseYOLOv5Ghostloss function

赵鑫、马明涛、王丽芬、叶琪、段必冲

展开 >

吉林化工学院,吉林 吉林 132022

吉林农业科技学院,吉林 吉林 132101

苹果叶片病害 YOLOv5 Ghost 损失函数

吉林省科技发展计划

20230201073GX

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(18)