自动化应用2024,Vol.65Issue(18) :167-168.DOI:10.19769/j.zdhy.2024.18.049

基于深度可分离卷积的三维模型轻量化处理方法

Lightweight Processing Method for 3D Models Based on Depthwise Separable Convolution

罗育林
自动化应用2024,Vol.65Issue(18) :167-168.DOI:10.19769/j.zdhy.2024.18.049

基于深度可分离卷积的三维模型轻量化处理方法

Lightweight Processing Method for 3D Models Based on Depthwise Separable Convolution

罗育林1
扫码查看

作者信息

  • 1. 南方电网数字平台科技(广东)有限公司,广东 深圳 518053
  • 折叠

摘要

三维模型轻量化处理方法是指对三维模型进行优化处理,以减少其占用的存储空间和计算资源,从而提高处理速度和系统性能的技术手段.在实际应用中,由于三维模型包含大量的顶点、面片和纹理等数据,需要运用三维模型轻量化技术来减少数据量,以更好地适应各种场景和需求.为此,提出基于深度可分离卷积的三维模型轻量化处理方法,以显著减少模型中的参数数量和计算量.该方法对于提升处理效率和优化系统性能具有重要意义.

Abstract

3D model lightweight processing method refers to the technical means to optimize the processing of 3D models to reduce the storage space and computational resources they occupy,so as to improve the processing speed and system performance.In practical applications,since 3D models contain a large amount of data such as vertices,facets and textures,it is necessary to use 3D model lightweighting techniques to reduce the amount of data in order to better adapt to a variety of scenarios and needs.Therefore,a 3D model lightweight processing method based on depthwise separable convolution is proposed to significantly reduce the number of parameters and computational complexity in the model.This method is of great significance for improving processing efficiency and optimizing system performance.

关键词

深度可分离卷积/轻量化处理/三维模型/卷积神经网络

Key words

depthwise separable convolution/lightweight processing/3D model/convolutional neural network

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
段落导航相关论文