首页|基于EEMD的声振信号特征融合轴承故障诊断

基于EEMD的声振信号特征融合轴承故障诊断

扫码查看
针对滚动轴承故障诊断中声振信号存在非平稳、非线性的特点,同时单一的声音或振动信号所包含的故障特征信息不全面的问题,提出一种运用集合经验模态分解(EEMD)处理滚动轴承信号的方法,并提取声音、振动信号的特征量进行故障判断.首先,利用EEMD方法,选取含有故障特征的IMF分量进行信号重构,经过快速傅里叶变换得到滚动轴承在降噪处理后的故障信息.然后,根据声音信号获得各故障的特征MFCC图和振动信号的IMF分量峭度值与能量熵,得到滚动轴承的声振信号特征.最后,基于各特征量进行融合故障判断.声振信号特征融合的故障判断正确率表明,与单一的信号故障判断方法相比,该方法能获得更丰富的故障判断信息,并且该方法比单一的声音信号故障判断方式的正确率提高了7.88%,比单一的振动信号故障判断方式的正确率提高了3.23%,验证了基于EEMD的声振信号特征融合轴承故障诊断方法的正确性.
EEMD-Based Feature Fusion of Acoustic and Vibration Signals for Bearing Fault Diagnosis
Aiming at the problem that the acoustic and vibration signals in rolling bearing fault diagnosis have the characteristics of non-smoothness and non-linearity,and at the same time,the fault characteristic information contained in a single sound or vibration signal is not comprehensive,a method is proposed to use the ensemble empirical modal decomposition(EEMD)to process the signal of rolling bearing and extract the characteristic quantities of the acoustic and vibration signals for the fault judgment.Firstly,using the EEMD method,the IMF components containing fault features are selected for signal reconstruction,and the fault information of rolling bearings after noise reduction is obtained by fast Fourier transform.Then,the characteristic MFCC map of each fault and the IMF component cliff value and energy entropy of the vibration signal are obtained based on the sound signal,and the acoustic and vibration signal characteristics of the rolling bearing are obtained.Finally,the fusion fault judgment is carried out based on each feature quantity.The correct rate of fault judgment of acoustic and vibration signal feature fusion shows that the method can obtain richer fault judgment information compared with the single signal fault judgment method,and the method improves the correct rate by 7.88%compared with the single sound signal fault judgment method,and improves the correct rate by 3.23%compared with the single vibration signal fault judgment method,which verifies that the EEMD-based acoustic and vibration signal feature fusion bearing fault diagnosis method is correct.

rolling bearingsEEMDacoustic and vibration signal fusionfault diagnosis

王瑞辰、赵京

展开 >

吉林化工学院信息与控制工程学院,吉林 吉林 132022

中核检修有限公司,上海 201700

滚动轴承 集合经验模态分解 声振融合 故障诊断

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(19)