首页|基于改进DBO-BiLSTM-GRU的光伏发电功率预测方法研究

基于改进DBO-BiLSTM-GRU的光伏发电功率预测方法研究

扫码查看
由于光伏发电功率的大小受多因素的影响,具有明显的波动性、不稳定性、季节性等特征,因此,如何精准预测光伏发电功率是目前的一大难题.为解决以上问题,提出了一种基于改进DBO-BiLSTM-GRU的光伏发电功率预测方法.其中,双向长短期记忆网络(BiLSTM)用于提取历史光伏发电功率数据的时序特征.首先,使用结构更精简的门控循环单元(GRU)进一步预测光伏发电功率;其次,引入改进的蜣螂优化算法(DBO)优化BiLSTM-GRU组合模型的超参数,进一步提高模型的预测效率及精度;最后,利用安徽省光伏电站的真实发电功率数据验证模型.结果表明,与目前常用的先进预测模型相比,所提出的预测模型能明显提升预测精度.
Research on Photovoltaic Power Generation Prediction Method Based on Improved DBO-BiLSTM-GRU
Due to the influence of multiple factors on the magnitude of photovoltaic power generation,it has obvious characteristics such as volatility,instability,and seasonality.Therefore,how to accurately predict photovoltaic power generation is currently a major challenge.To solve the above problems,a photovoltaic power prediction method based on improved DBO-BiLSTM-GRU is proposed.Among them,the bidirectional long short term memory network(BiLSTM)is used to extract temporal features of historical photovoltaic power generation data.Firstly,use a more streamlined gated recurrent unit(GRU)to further predict photovoltaic power generation.Secondly,the improved dungeon optimization algorithm(DBO)is introduced to optimize the hyperparameters of the BiLSTM-GRU combination model,further improving the prediction efficiency and accuracy of the model.Finally,the model was validated using real power generation data from photovoltaic power stations in Anhui Province.The results indicate that the proposed prediction model can significantly improve prediction accuracy compared to commonly used advanced prediction models.

power systemphotovoltaic power generationgeneration predictionoptimization algorithm

戴长春、郑晓亮、杨铖、杨晓亮、刘路登、马斌、来文豪

展开 >

国网安徽省电力有限公司,安徽 合肥 230022

安徽理工大学电气与信息工程学院,安徽 淮南 232001

电力系统 光伏发电功率 功率预测 优化算法

国网安徽省电力有限公司科技项目

52120023001Q

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(19)