首页|基于YOLOv5s与PP-LC的电气化铁路接触网异物入侵检测模型设计

基于YOLOv5s与PP-LC的电气化铁路接触网异物入侵检测模型设计

扫码查看
为及时检测接触网的异物入侵情况,并为工作人员提供高效准确的监测结果,结合YOLO系列版本5算法和轻量级CPU卷积神经网络构建了接触网异物入侵检测模型.该模型在传统YOLO系列版本5算法的基础上引入轻量级CPU卷积神经网络、注意力机制以及金字塔池化结构,并对其主干网络进行改进;同时,引入新的卷积模块改进算法的颈部结构.结果表明,研究设计模型的检测平均准确率为95.74%,且在与其他流行模型的比较实验中,其检测速度为0.012 s/帧,明显比其他模型快.该设计模型能在保证检测精度的基础上实现较高效率的异物检测.
Design of Foreign Object Intrusion Detection Model for Electrified Railway Contact Network Based on YOLOv5s and PP-LC
In order to detect foreign object intrusion in the contact network in a timely manner and provide efficient and accurate monitoring results for staff,a contact neural network foreign object intrusion detection model was constructed by combining YOLO series version 5 algorithm and lightweight CPU convolutional neural network.This model introduces a lightweight CPU convolutional neural network,attention mechanism,and pyramid pooling structure based on the traditional YOLO series version 5 algorithm,and improves its backbone network.At the same time,a new convolution module is introduced to improve the neck structure of the algorithm.The results showed that the average detection accuracy of the research design model was 95.74%,and in comparative experiments with other popular models,its detection speed was 0.012 s/frame,significantly faster than other models.This design model can achieve high efficiency in foreign object detection while ensuring detection accuracy.

electrified railwaycontact networkforeign object detectionYOLOv5spyramid pooling

高赟贤、张晓飞、韩朝建

展开 >

天津津铁供电有限公司,天津 300384

电气化铁路 接触网 异物检测 YOLOv5s 金字塔池化

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(19)