首页|基于MADDPG模型的电力市场发电侧优化研究

基于MADDPG模型的电力市场发电侧优化研究

扫码查看
随着中国电力市场改革的深入推进,发电侧市场竞争日益激烈,发电商面临多重不确定性和挑战.为此,首先构建了电力现货市场出清模型,将其作为多代理模型的外部环境,然后将深度确定性策略梯度(DDPG)置于多智能体(MA)系统下进行自然扩展得到MADDPG模型,最后利用该模型提高智能体在多代理环境中的训练效果和策略优化能力,使供电商能通过学习和优化策略在竞争中获得最大化的收益.结果显示,MADDPG竞价策略模型在A、B发电节点系统中计算电价,分别迭代50次和48次时趋于稳定.此外,MADDPG竞价策略模型还可以较准确地预测电力市场的负荷,其预测值与实际值最大误差不超过2%.这说明MADDPG竞价策略模型在电力市场竞价优化方面具有较好的稳定性和预测准确性,能有效帮助供电商在激烈的市场竞争中获取最大化的收益.
Research on Optimization of Generation Side in Electricity Market Based on MADDPG Model
With the deepening of China's electricity market reform,competition in the power generation market is becoming increasingly fierce,and power generators are facing multiple uncertainties and challenges.To this end,a clearing model for the electricity spot market was first constructed as the external environment of the multi-agent model.Then,the deep deterministic policy gradient(DDPG)was placed under the multi-agent(MA)system for natural extension to obtain the MADDPG model.Finally,this model was used to improve the training effectiveness and strategy optimization ability of the agents in the multi-agent environment,enabling power suppliers to maximize profits in competition through learning and optimizing strategies.The results show that the MADDPG bidding strategy model calculates electricity prices in the A and B generation node systems,and tends to stabilize after 50 and 48 iterations,respectively.In addition,the MADDPG bidding strategy model can accurately predict the load of the electricity market,with a maximum error of no more than 2%between the predicted value and the actual value.The MADDPG bidding strategy model demonstrates good stability and predictive accuracy in optimizing electricity market bidding,effectively helping power suppliers maximize profits in fierce market competition.

electricity marketstrategy optimizationelectricity priceloadeconomy

钟甜甜、刘萍、经菁、黄源媛

展开 >

四川电力交易中心有限公司,四川 成都 610000

电力市场 策略优化 电价 负荷 经济

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(20)