首页|基于大数据技术的智能电网多源数据自动检测方法

基于大数据技术的智能电网多源数据自动检测方法

扫码查看
提出一种基于大数据技术的智能电网多源数据自动检测方法.首先,该方法对电网多源异构数据进行统一建模,通过提取关键物理量和状态信息,构建多源数据关联图谱;然后,基于关联图谱设计图卷积神经网络(GCN)模型,端到端学习多源数据间的复杂关联特征,实现设备故障等异常的自动检测.仿真实验表明,该方法充分挖掘了多源数据内在联系,显著提高了异常检测的准确性,可为电网监控决策提供依据.
Anomaly Detection Method for Multi-Source Data in Smart Grid Based on Big Data Technology
This paper proposes an automatic detection method for multi-source data in smart grids based on big data technology.The method involves unified modeling of multi-source heterogeneous data from the power grid,extracting key physical quantities and state information to construct an association graph spectrum of multi-source data.Subsequently,a graph convolutional network(GCN)model is designed based on the association graph spectrum,which learns end-to-end the complex associative features between multi-source data to achieve automatic detection of anomalies such as equipment failures.Simulation experiments demonstrate that the method fully exploits the intrinsic connections of multi-source data,significantly improving the accuracy of anomaly detection,and providing a basis for power grid monitoring and decision-making.

big data technologysmart gridmulti-source dataautomatic detection

熊思宇、叶鑫

展开 >

国网湖北省电力有限公司荆门供电公司东宝区供电中心,湖北 荆门 448000

大数据技术 智能电网 多源数据 自动检测

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(20)