首页|架空线路覆冰导线的图像分割研究

架空线路覆冰导线的图像分割研究

扫码查看
深入研究了架空线路覆冰导线的图像分割技术,并提出了基于Mask R-CNN的新型识别方法.该方法针对复杂背景下的导线图像进行高效处理,利用在线监测系统获取的原始图像作为输入数据.经过模型的精确计算,该方法能够准确判断图像中导线的覆冰状态(有冰或无冰),并输出覆冰区域的目标框以及覆冰导线的掩膜.与U-Net模型进行对比实验后,发现Mask R-CNN不仅显著缩短了90%的模型训练时间,还提升了约10%的准确率,充分展现了其在架空线路覆冰导线图像分割领域的卓越性能.
Research on Image Segmentation of Ice-Covered Wires for Overhead Lines
This paper deeply studies the image segmentation technology of ice-covered wires for overhead lines,and proposes a new recognition method based on Mask R-CNN.This method efficiently processes wire images under complex background,and uses the original images obtained by online monitoring system as input data.After accurate calculation of the model,the method can accurately judge the ice-covered state of the wire in the image(with or without ice),and output the target frame of the ice-covered area and the mask of the ice-covered wire.After the comparison experiment with U-Net model,it is found that Mask R-CNN not only significantly reduces the model training time by 90%,but also improves the accuracy by about 10%,fully demonstrating its excellent performance in the field of image segmentation of ice-covered wires in overhead lines.

overhead lineice-covered wireimage analysis

崔长杰、张祥、李光泽、代坤明

展开 >

安徽送变电工程有限公司,安徽 合肥 230000

架空线路 覆冰导线 图像分析

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(20)