首页|基于改进遗传算法的选煤生产配煤优化

基于改进遗传算法的选煤生产配煤优化

扫码查看
选煤厂产品质量控制是其可持续发展的重要手段.为提高选煤工艺的技术水平,增强选煤厂产品竞争力,提高经济效益和减少资源浪费,以山西华泰洗煤厂为例,对传统的配煤方式进行优化设计,并基于退火算法和遗传算法建立了新型工艺参数优化模型.结果表明,基于改进遗传算法的选煤生产配煤优化显著提高了选煤效率,调整模型参数有助于对不同选煤厂的不同煤源煤质特征的原煤进行洗选.
Optimization of Coal Blending in Coal Preparation Production Based on Improved Genetic Algorithm
Product quality control is an important means for the sustainable development of coal preparation plant.In order to improve the technical level of coal preparation process,enhance the product competitiveness of coal preparation plant,improve economic benefits and reduce resource waste,taking Shanxi Huatai Coal Washing Plant as an example,the traditional coal blending method was optimized and a new process parameter optimization model was established based on annealing algorithm and genetic algorithm.The results show that the optimization of coal blending in coal preparation production based on improved genetic algorithm significantly improves the efficiency of coal preparation,and adjusting the model parameters helps to wash the raw coal with different coal quality characteristics from different coal sources in different coal preparation plants.

coal preparation plantwashing processmathematical modelannealing algorithmgenetic algorithmprocess parameter optimization model

郑文瑞

展开 >

山西离柳焦煤集团柳林有限公司,山西 吕梁 033300

选煤厂 洗选工艺 数学模型 退火算法 遗传算法 工艺参数优化模型

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(20)