首页|基于形态学-小波的配电线路断线故障自动检测研究

基于形态学-小波的配电线路断线故障自动检测研究

扫码查看
常规的断线故障自动检测方法以故障信号识别为主,并未考虑到负序电流、电压对故障检测的影响,导致出现自动检测失误的问题.因此,设计了基于形态学-小波的配电线路断线故障自动检测方法.提取配电线路断线故障序电流变化特征,分析正序、负序、零序电流变化状态,判断配电线路断线故障类别.基于形态学-小波构建线路断线故障自动检测模型,将配电线路断线故障信号进行膨胀、腐蚀、分解等运算,得到准确的故障输入条件,避免故障自动检测失误的问题.根据故障馈线出口处负序电流变化量最小值,求解配电线路断线故障负序网络分支系数,得出负荷正序阻抗最大值,从而确定断线故障区段.采用仿真实验,验证了该方法的自动检测准确性更高,能应用于实际生活.
Research on Automatic Detection of Distribution Line Disconnection Fault Based on Morphology Wavelet
The conventional automatic detection method for wire breakage mainly focuses on fault signal recognition,without considering the influence of negative sequence current and voltage on fault detection,resulting in automatic detection errors.Therefore,a morphology wavelet based automatic detection method for distribution line disconnection faults was designed.Extract the characteristics of current changes in distribution line disconnection faults,analyze the changes in positive,negative,and zero sequence currents,and determine the category of distribution line disconnection faults.Based on morphology wavelet,an automatic detection model for line breakage faults is constructed.The distribution line breakage fault signal is subjected to expansion,corrosion,decomposition and other operations to obtain accurate fault input conditions,avoiding the problem of automatic fault detection errors.Based on the minimum change in negative sequence current at the outlet of the faulty feeder line,the branch coefficient of the negative sequence network for the broken fault of the distribution line is solved to obtain the maximum positive sequence impedance of the load,thereby determining the broken fault section.Through simulation experiments,it has been verified that this method has higher accuracy in automatic detection and can be applied to practical life.

morphologywave transformationdistribution linesdisconnection faultsautomatic detection methods

瞿卫华

展开 >

中国长电国际(香港)有限公司,北京 100033

形态学 波变换 配电线路 断线故障 自动检测方法

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(23)