自动化应用2024,Vol.65Issue(24) :73-75.DOI:10.19769/j.zdhy.2024.24.022

基于强化学习的煤矿矿井通风系统设计与实现

Design and Implementation of Coal Mine Shaft Ventilation System Based on Reinforcement Learning

鲁剑波 梅洋洋
自动化应用2024,Vol.65Issue(24) :73-75.DOI:10.19769/j.zdhy.2024.24.022

基于强化学习的煤矿矿井通风系统设计与实现

Design and Implementation of Coal Mine Shaft Ventilation System Based on Reinforcement Learning

鲁剑波 1梅洋洋2
扫码查看

作者信息

  • 1. 陕西省煤矿瓦斯治理督导组,陕西 咸阳 713602
  • 2. 陕西彬长胡家河矿业有限公司,陕西 咸阳 713602
  • 折叠

摘要

针对煤矿矿井的安全生产需求,提出了一种基于强化学习的通风系统设计与实现方案.首先详细设计了矿井通风系统的整体架构,然后深入探讨了强化学习技术在通风系统优化控制中的应用,包括关键算法和策略.通过构建仿真平台,对所提方案进行了系统性验证.结果表明,与传统PID控制方法相比,所提通风系统能够显著降低事故风险,实现节能增效,助推煤炭行业的智能化、绿色化发展.

Abstract

This paper addresses the safety production requirements of coal mine shafts by proposing a ventilation system design and implementation scheme based on reinforcement learning. Initially,the overall architecture of the mine ventilation system is meticulously designed,followed by an in-depth exploration of the application of reinforcement learning technology in the optimization and control of the ventilation system,including key algorithms and strategies. A simulation platform is constructed to systematically verify the proposed scheme. The results indicate that,compared with traditional PID control methods,the ventilation system presented in this paper can significantly reduce the risk of accidents,achieving energy saving and efficiency enhancement,promoting the intelligent and green development of the coal industry.

关键词

强化学习/煤矿矿井/通风系统

Key words

reinforcement learning/coal mine shaft/ventilation system

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
段落导航相关论文