首页|基于区域供电侧和需求侧管理的住宅能耗预测

基于区域供电侧和需求侧管理的住宅能耗预测

扫码查看
随着能源供需的动态变化和季节性变化,住宅建筑能耗预测在能源管理和控制系统中发挥着重要作用.对16000余栋居民楼的月用电量进行精确分类,使用数据挖掘技术来发现和总结隐藏在数据中的用电模式;将粒子群优化-K-means算法应用到聚类分析中,通过聚类中心划分用电水平;提出了以支持向量机为基本优化框架的高效分类模型,并验证了其可行性.结果表明,新模型的准确率和F-measure分别达到96.8%和97.4%,明显优于传统方法.所提方法将有助于电力部门掌握居民用电的动态行为,为制定合理的供需管理策略提供决策参考,对提高电网整体质量具有重要价值.
Residential Energy Consumption Prediction Based on Regional Power Supply Side and Demand Side Management
With the dynamic and seasonal changes in energy supply and demand,residential building energy consumption prediction plays an important role in energy management and control systems. The monthly electricity consumption of more than 16000 residential buildings is accurately classified,and data mining techniques are used to discover and summarize the electricity consumption patterns hidden in the data. The particle swarm optimization-K-means algorithm is applied to the cluster analysis to classify the level of electricity consumption through the cluster centers. An efficient classification model using the support vector machine as the basic optimization framework is proposed and verified to be feasible. The results show that the accuracy and F-measure of the new model reach 96.8% and 97.4% respectively,which are significantly better than the traditional methods. The method proposed in this paper will help the power sector to grasp the dynamic behavior of residential electricity consumption,provide decision-making reference for the formulation of reasonable supply and demand management strategies,and be of great value for improving the overall quality of the power grid.

residential buildingsenergy consumption predictioncluster analysisSVM

张登峰

展开 >

国网山西省电力公司大同供电公司,山西大同 037000

居住建筑 能耗预测 聚类分析 支持向量机

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(24)