首页|基于多光谱激光点云的输电线路走廊树障识别

基于多光谱激光点云的输电线路走廊树障识别

扫码查看
利用多光谱激光点云技术识别输电线路走廊中的树障,提高树障识别的准确性和识别效率,并保障电力线路的安全稳定运行.选取了浙江省某山区10 km的输电线路走廊作为研究对象,通过多光谱激光雷达和高性能无人机平台采集数据,并采用基于机器学习的树障识别算法处理和分析数据.结果表明,系统的总体识别精度达到93%,误报率为4%,漏报率为3%.整个数据处理过程耗时约10 h,用户满意度达到90%以上.与传统人工巡检方法相比,该系统显著降低了成本,并提高了输电线路的运行效率和安全性.
Tree Obstacle Recognition in Transmission Line Corridors Based on Multispectral Laser Point Cloud
Using multispectral laser point cloud technology to identify tree obstacles in transmission line corridors,improving the accuracy and efficiency of tree obstacle identification,and ensuring the safe and stable operation of power lines. Selected a 10 km transmission line corridor in a mountainous area of Zhejiang Province as the research object,collected data through multispectral LiDAR and high-performance unmanned aerial vehicle platform,and used machine learning based tree obstacle recognition algorithm to process and analyze the data. The results showed that the overall recognition accuracy of the system reached 93%,with a false alarm rate of 4% and a false alarm rate of 3%. The entire data processing process takes about 10 hours,and user satisfaction reaches over 90%. Compared with traditional manual inspection methods,this system significantly reduces costs and improves the operational efficiency and safety of transmission lines.

multispectral laser point cloudtransmission line corridortree obstacle recognitionUAVmachine learning

缪加加

展开 >

国网浙江省电力有限公司杭州市富阳区供电公司,浙江杭州 311400

多光谱激光点云 输电线路走廊 树障识别 无人机 机器学习

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(24)