首页|基于大数据和卷积神经网络的仓库自动化补仓预警方法

基于大数据和卷积神经网络的仓库自动化补仓预警方法

扫码查看
仓库预警是仓库自动化管理中的重要环节,同时也是自动化管理系统的核心功能.但现行预警方法因预警精度较低导致仓库订单延误和积压,已无法达到预期的预警效果.为此,提出基于大数据和卷积神经网络的仓库自动化补仓预警方法.首先,采用电子标签+读写器组合的方式对仓库补仓数据进行自动化收集,并以大数据技术中的Find函数作为数据清洗工具对原始数据进行清洗,实现仓库自动化补仓大数据集成;然后,采用卷积神经网络技术对大数据进行分析,提取仓库补仓特征;最后,采用综合分析法对补仓预警等级进行综合评价,实现基于大数据和卷积神经网络的仓库自动化补仓预警.经实验证明,应用设计方法后,仓库订单延误数量得到了有效的减少,库存积压量也得到了有效的降低,可以实现对仓库自动化补仓精准预警.
Warehouse Automation Replenishment Warning Method Based on Big Data and Convolutional Neural Networks
Warehouse warning is an important part of warehouse automation management and also the core function of automation management systems. However,the current warning methods have been unable to achieve the expected warning effect due to low warning accuracy,which has led to delays and backlogs in warehouse orders. Therefore,a warehouse automation replenishment warning method based on big data and convolutional neural networks is proposed. Firstly,the warehouse replenishment data is automatically collected using a combination of electronic tags and readers,and the Find function in big data technology is used as a data cleaning tool to clean the raw data,achieving the integration of warehouse automation replenishment big data. Then,convolutional neural network technology is used to analyze big data and extract warehouse replenishment features. Finally,a comprehensive analysis method is used to evaluate the level of warehouse replenishment warning,achieving automated warehouse replenishment warning based on big data and convolutional neural networks. Experimental results have shown that the application of design methods effectively reduces the number of delayed warehouse orders and inventory backlog,enabling precise warning of automated replenishment in the warehouse.

big dataconvolutional neural networkwarehouseautomated replenishmentFind functioncomprehensive analysis method

高子戈、李春晖、陆智文、覃怡、黄林泽

展开 >

广东电网有限责任公司广州供电局,广东广州 510700

大数据 卷积神经网络 仓库 自动化补仓 Find函数 综合分析法

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(24)