首页|基于机器视觉的变电站设备状态监测与识别方法研究

基于机器视觉的变电站设备状态监测与识别方法研究

扫码查看
现有的变电站自动巡检方式有效性低、工作质量差,难以保障巡检人员的安全.为此,研究一种基于机器视觉的智能变电站设备巡检系统,利用机器视觉、深度度学习等人工智能技术对变电站设备进行智能巡检和远程运维,可以代替人工巡检,提高巡检效率和实时性,定位变电站设备故障,帮助识别故障并给出相应的处理意见,加快事故处理速度,降低恶劣天气下巡检维护人员的人身安全风险,确保变电站设备的安全稳定,为新电力系统建设提供有力支撑.同时,以某500 kV变电站进行实例分析,可以看出该系统在单台主变停电倒闸操作中可节省5.63 h的工作时间,证实了该系统的实用高效.
Research on Machine Vision Based Monitoring and Recognition Methods for Substation Equipment Status
The existing substation automatic inspection mode has low effectiveness and poor work quality,which is difficult to ensure the safety of inspection personnel.Therefore,this paper studies an intelligent substation equipment inspection system based on machine vision,which uses artificial intelligence technologies such as machine vision and depth learning to carry out intelligent inspection and remote operation and maintenance of substation equipment.It can replace manual patrol inspection,improve the efficiency and real-time of patrol inspection,locate substation equipment faults,help identify faults and give corresponding treatment opinions,speed up accident treatment,reduce the personal safety risk of patrol maintenance personnel in bad weather,ensure the safety and stability of substation equipment,and provide strong support for the construction of new power system.At the same time,taking a 500 kV substation as an example,it can be seen that the system can save 5.63 hours of working time in the power failure and switching operation of a single main transformer,which proves the practicality and efficiency of the system.

device statusintelligent inspectionintelligent recognitionswitching operationmachine vision

夏爱标

展开 >

国电南瑞南京控制系统有限公司,江苏 南京 210000

设备状态 智能巡检 智能识别 倒闸操作 机器视觉

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(z1)