首页|基于遗传算法的电动汽车能量数学建模及优化方法

基于遗传算法的电动汽车能量数学建模及优化方法

扫码查看
针对基于规则的能量管理策略中不易优化的问题,提出一种基于遗传算法的电动汽车能量优化模型.首先确定遗传算法的种群规模,然后通过优化参数选择及编码,初始化种群,适应度函数确定,确定选择、交叉和变异算子,遗传算法的改进和设定迭代次数构建电动汽车能量管理优化模型,最后在WLTC循环工况、CLTC循环工况和NEDC循环工况下进行电动汽车的能量消耗仿真实验.仿真结果表明,本研究提出的优化模型相对于基于平均分配的电动汽车能量优化模型,WLTC循环工况下电动汽车的驱动电机总耗能降低了 5.62%,CLTC循环工况下总耗能降低了 6.83%、NEDC循环工况下耗能降低了 4.01%.本研究的优化策略能够减少电动汽车能量优化管理中计算量,提高优化精度,适应性良好,节能效果好,应用前景广阔.
Mathematical Modeling and Optimization Method of Electric Vehicle Energy Based on Genetic Algorithm
A genetic algorithm based energy optimization model for electric vehicles is proposed to address the issue of difficulty in optimizing rule-based energy management strategies.First,determine the population size of the genetic algorithm,then initialize the population through optimizing parameter selection and coding,determine the fitness function,determine the selection,crossover and mutation operators,improve the genetic algorithm and set the number of iterations to build an optimization model for energy and energy management of electric vehicles,and finally conduct energy consumption simulation experiments of electric vehicles under WLTC cycle,CLTC cycle and NEDC cycle.The simulation results show that the model proposed in this study reduces the total energy consumption of the driving motor of electric vehicles under WLTC cycle conditions by 5.62%,CLTC cycle conditions by 6.83%,and NEDC cycle conditions by 4.01%compared to the energy optimization model based on average allocation.The optimization strategy of this study can reduce the computational workload in energy optimization management of electric vehicles,improve optimization accura-cy,have good adaptability,energy-saving effects,and broad application prospects.

genetic algorithmelectric vehiclesenergy managementenergy conservation

黄阿娜、习璐

展开 >

咸阳职业技术学院,陕西咸阳 712000

遗传算法 电动汽车 能量管理 节能

陕西省教育厅一般专项科研计划自然科学研究项目(2022)

22JK0607

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(1)
  • 15