首页|基于PID的生物离心机自动定位控制研究

基于PID的生物离心机自动定位控制研究

扫码查看
针对现有基于PID的生物离心机光电编码器定位精度误差大的问题,通过采用人工鱼群优化BP神经网络初始权值与阈值选择,提出一种生物离心机自动定位控制误差补偿方法.仿真结果表明,所提方法可有效补偿生物离心机光电编码器的误差,提高离心机自动定位精度,误差补偿后的最大误差为0.039°,最小误差为-0.013 5°,平均误差为4.86",标准差为0.32,相较于误差补偿前,整体精度提高了 3.34倍,具有一定的有效性.
Research on automatic positioning control of biological centrifuge based on PID
Aiming at the problem of large positioning accuracy error of the existing photoelectric encoder of biological centrifuge based on PID,an improved BP neural network error compensation method for automatic positioning control of biological centrifuge is proposed by using artificial fish swarm algorithm to optimize the initial weight and threshold of BP neural network,and using the im-proved BP neural network to compensate the error.The simulation results show that the proposed method can effectively compensate the error of the photoelectric encoder of the biological centrifuge and improve the automatic positioning accuracy of the centrifuge.Af-ter error compensation,the maximum error is 0.039 °,the minimum error is-0.013 5 °,the average error is 4.86",and the stand-ard deviation is 0.32.Compared with before error compensation,the overall accuracy is improved by 3.34 times,which is effective.

biological centrifugeautomatic positioningBP neural networkartificial fish swarm algorithmerror compensation

窦敏娜、王晓霞

展开 >

咸阳职业技术学院,陕西咸阳71200

生物离心机 自动定位 BP神经网络 人工鱼群算法 误差补偿

全国轻工职业教指委项目(2021)陕西省教育科学规划课题(十四五)(2021)

QGHZW2021134SGH21Y0593

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(1)
  • 15