首页|改进麻雀搜索算法在智能配电网自愈控制中的应用研究

改进麻雀搜索算法在智能配电网自愈控制中的应用研究

扫码查看
针对当前智能配电网自愈控制效率低、效果差的问题,研究在考虑到智能配电网的自我预防和自我恢复的基础上,从配电网优化重构和故障恢复两个角度出发,构建了智能配电网自愈控制数学模型,并采用麻雀搜索算法(Sparrow Search Algorithm,SSA)对其进行求解.针对SSA收敛性和寻优性能不够理想的缺陷,研究引入Chebyshev混沌映射、黄金正弦等策略来对其进行改进,以提升自愈控制数学模型的求解效果.实验结果显示,ISSA算法的Recall值为95.94%,F1值为94.48%.在配电网自愈控制中,ISSA算法优化后的开关使用次数与网损均低于其他两种算法.综上所述,研究提出的基于ISSA的智能配电网自愈控制方法能够有效提高自愈性能,保证电网的安全、稳定运行.
Research on the Application of Improved Sparrow Search Algorithm in Self healing Control of Intelligent Distribution Networks
In response to the low efficiency and poor effectiveness of self-healing control in current intelligent distribution net-works,this study considers the self prevention and self recovery of intelligent distribution networks,and constructs a mathematical model of self-healing control in intelligent distribution networks from the perspectives of distribution network optimization reconstruc-tion and fault recovery.Sparrow Search Algorithm(SSA)is used to solve it.In response to the shortcomings of SSA's unsatisfactory convergence and optimization performance,research has introduced strategies such as Chebyshev chaotic mapping and golden sine to improve it,in order to enhance the solving effect of the self-healing control mathematical model.The experimental results show that the Recall value of ISSA algorithm is 95.94%,and the F1 value is 94.48%.In the self-healing control of distribution networks,the optimized ISSA algorithm has lower switch usage times and network losses compared to the other two algorithms.In summary,the IS-SA based intelligent distribution network self-healing control method proposed in the study can effectively improve self-healing per-formance and ensure the safe and stable operation of the power grid.

sparrow search algorithmintelligent distribution networkself healing controlstatus assessment

陈俊彬、邝似斌、江泉、陈科平、潘敏敏

展开 >

广东电网有限责任公司汕尾供电局,广东汕尾 516600

海南电网有限责任公司三亚供电局,海南三亚 572000

广东电网有限责任公司汕尾海丰供电局,广东汕尾 516600

海南电网有限责任公司乐东供电局,海南乐东 572500

展开 >

麻雀搜索算法 智能配电网 自愈控制 状态评估

&&

031500KK52220010GDKJXM20220846

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(1)
  • 1
  • 14