首页|混合ACA-SA算法的无人机巡检电塔路径优化方法

混合ACA-SA算法的无人机巡检电塔路径优化方法

扫码查看
无人机巡检成本低、效率高,正逐渐取代传统人工巡检方式,成为目前输电线路智能巡检的主要手段.然而输电铁塔结构复杂、巡检部位多,且单一的启发式算法规划的飞行路径收敛速度慢、易陷入局部最优.针对以上问题,提出一种基于混合蚁群-模拟退火(ACA-SA)算法的输电铁塔巡检三维路径优化方法,该方法以110 kV耐张塔的三维模型为算例,根据电力行业标准建立电塔安全巡检面和动态标定26个巡检点,并在ACA计算进入停滞状态时,利用SA算法前期高温时的突跳特性避免陷入局部最优,通过改变信息素分布,指导蚁群寻找最短路径.将混合ACA-SA算法与ACA、SA算法进行对比,实验显示混合ACA-SA算法在收敛速度和最短距离上分别提高了 14.43%和9.64%,与传统遗传算法相比在收敛速度和最短距离上分别提高了 47.13%和1.13%,从而提高无人机巡检效率.
A hybrid AC A-SA algorithm for UAV inspection path optimization
With low cost and high efficiency,UAV inspection is gradually replacing traditional manual inspection and becoming the main means of intelligent inspection for transmission lines.However,the structure of transmission tower is complex,the inspection parts are many,and the flight path planned by a single heuristic algorithm converges slowly,which is easy to fall into the local opti-mal.To solve the above problems,a three-dimensional path optimization method for transmission tower inspection based on hybrid ant colony Simulated Annealing(ACA-SA)algorithm was proposed.The method took the three-dimensional model of 110kV ten-sioned tower as an example,established the safety inspection surface of the tower and dynamically calibrated 26 inspection points ac-cording to the standards of the electric power industry,and when ACA calculation entered the stagnant state,By using the jump char-acteristic of SA algorithm in the early stage of high temperature to avoid falling into the local optimal,the ant colony is guided to find the shortest path by changing the pheromone distribution.By comparing the hybrid ACA-SA algorithm with ACA and SA algorithm,the experiment shows that the convergence speed and the shortest distance of the hybrid ACA-SA algorithm are improved by 14.43%and 9.64%respectively,thus improving the UAV inspection efficiency.

UAV inspectionhigh-voltage transmission towerhybrid algorithmroute optimization

刘宏胜、李宏杰、张华君、薛鹏、李旭涛、贾璐萌

展开 >

太原科技大学电子信息工程学院,太原 030024

太原科技大学机械工程学院,太原 030024

无人机巡检 高压输电塔 混合算法 路径优化

国家重点研发计划山西省研究生教育教学改革项目太原科技大学研究生创新项目

2020YFB13140042022YJJG190SY2022014

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(1)
  • 5