首页|基于卷积神经网络的地基云人工智能分类器研究

基于卷积神经网络的地基云人工智能分类器研究

扫码查看
随着科学技术的发展,对地基云的研究也越来越深入,地基云的研究对天气预报、水资源管理、农业生产等领域具有重要的意义.传统地基云分类方法存在数据需求大、运行速率慢等问题.研究为了解决这些问题构建了 一种融合双通道卷积神经网络(ConvolutionalNeuralNetworks,CNN)算法与压缩感知的地基云分类器.首先通过对CNN进行改进,得到双通道的CNN算法,然后将其与压缩感知进行融合,得到地基云人工智能分类器;最后通过不同方法进行对,以验证构建的地基云分类器对地基云的分类能力.结果表明在光线正常、光线较暗、水平角度、俯仰角度的观测前提下,地基云分类器的识别准确率平均值为73.95%、45.39%、92.61%和43.82%,均高于对照算法.这表明该地基云分类器具有较高的准确率和鲁棒性.
Research on ground-based cloud artificial intelligence classifier based on convolutional neural network
With the development of science and technology,the research on ground-based clouds has become more and more in-depth,and the research on ground-based clouds is important for weather forecasting,water resources management,agricultural pro-duction and other fields.Traditional ground-based cloud classification methods have problems such as large data requirements and slow operation rates.The study constructs a ground-based cloud classifier that combines a two-channel Convolutional Neural Net-works(CNN)algorithm with compression-awareness in order to solve these problems.Firstly,a dual-channel CNN algorithm is ob-tained by improving the CNN,and then it is fused with compressive sensing to obtain a ground-based cloud artificial intelligence clas-sifier;finally,a pair of different methods is conducted to verify the classification ability of the constructed ground-based cloud classi-fier for ground-based clouds.The results show that the average recognition accuracy of the ground-based cloud classifier is 73.95%,45.39%,92.61%and 43.82%under the observation premise of normal light,low light,horizontal angle and pitch angle,which are higher than the control algorithm.This indicates that this ground-based cloud classifier has high accuracy and robustness.

convolutional neural networksfoundation cloudartificial intelligenceclassifiercompression perception

喻皓

展开 >

浙江建设职业技术学院,杭州 311231

马尼拉圣保罗大学,菲律宾马尼拉1004

卷积神经网络 地基云 人工智能 分类器 压缩感知

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(2)
  • 12