首页|面向不平衡样本的物联网轻量级入侵风险识别方法

面向不平衡样本的物联网轻量级入侵风险识别方法

扫码查看
在不平衡数据的干扰下,物联网的节点负担增大,容易受到轻量级入侵,因此,提出面向不平衡样本的物联网轻量级入侵风险识别方法.基于一维卷积神经网络设计轻量级入侵风险识别模型,为弥补模型训练不够稳定的缺陷,应用DCGAN设计样本数据平衡算法实施样本数据增强处理.将增强后的样本数据作为模型训练中的基础数据,并对构建的轻量级入侵风险识别模型实施训练,实现轻量级的物联网入侵风险识别.测试结果表明,相比剪枝前,剪枝后模型有效参数量的变化幅度达到10倍,在训练中模型很快达到收敛,同时达到了接近1的训练精度,并且本方法的入侵风险识别精度得到了明显的提升,始终稳定在97%左右.
A Lightweight Intrusion Risk Identification Method for IoT Based on Unbalanced Samples
Under the interference of imbalanced data,the node burden of the Internet of Things increases and is prone to light-weight intrusion.Therefore,a lightweight intrusion risk identification method for imbalanced samples in the Internet of Things is pro-posed.A lightweight intrusion risk identification model is designed based on one-dimensional Convolutional neural network.In order to make up for the lack of stability in model training,DCGAN is used to design a sample data balance algorithm to enhance the sample data.Use the enhanced sample data as the basic data for model training,and train the constructed lightweight intrusion risk identifica-tion model to achieve lightweight IoT intrusion risk identification.The test results show that compared to before pruning,the change in the effective parameter quantity of the model after pruning reaches 10 times.During training,the model quickly converges and rea-ches a training accuracy of nearly 1.Moreover,the intrusion risk identification accuracy of this method has been significantly im-proved,consistently stable at around 97%.

unbalanced samplesDCGANinternet of Thingslightweight intrusion riskone-dimensional convolutional neural network

钱游

展开 >

重庆城市职业学院科大讯飞大数据学院,重庆 402160

不平衡样本 DCGAN 物联网 轻量级入侵风险 一维卷积神经网络

重庆市物联网应用技术推广中心项目重庆市大数据与人工智能创新中心项目重庆市认知智能技术在职业教育课程资源建设中的应用研究项目工信部人才交流中心产教融合专业合作建设试点项目

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(2)
  • 15