首页|基于数据挖掘和语言特征的智慧机器翻译纠错系统研究

基于数据挖掘和语言特征的智慧机器翻译纠错系统研究

扫码查看
为改善机器翻译质量,促进国际交流沟通.研究基于数据挖掘(Data mining,DM)与语言特征,构建了智慧机器翻译纠错系统.研究对多个置信度特征进行组合,利用最大熵分类器对译文错误进行类别分类.然后基于复述抽取方法对译文进行校正,改善机器翻译质量.实验得到,纠错系统干预后,机器翻译的平均ELEU值为96.83%,较改进前提高了14.47%.数据表明,纠错系统能够有效识别机器翻译中的错误并进行校正,从而改善译文质量,作为国际沟通的强有力支持.
Research on intelligent machine translation error correction system based on data mining and language features
To improve the quality of machine translation and promote international communication.Based on data mining and lan-guage features,the intelligent machine translation error correction system is constructed.This paper studies the combination of multi-ple confidence features and the classification of translation errors using maximum entropy classifier.Then the translation is corrected based on the paraphrase extraction method to improve the quality of machine translation.The experiment shows that after the interven-tion of the error correction system,the average ELEU value of machine translation is 96.83%,which is 14.47%higher than that be-fore the improvement.The data shows that the error correction system can effectively identify and correct errors in machine transla-tion,thus improving the quality of translation,as a strong support for international communication.

MT data miningmaximum entropy classificationretelling extraction

魏惠强

展开 >

咸阳职业技术学院,陕西咸阳 712000

机器翻译 数据挖掘 最大熵分类 复述抽取

咸阳职院"双高"专项研究项目(2021)

2021SGA01

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(2)
  • 12