首页|高超声速飞行器前缘部件热防护结构的可靠性分析

高超声速飞行器前缘部件热防护结构的可靠性分析

扫码查看
针对当前高超声速飞行器热防护结构可靠性评估方法可信度较低且效率较低的问题,提出一种基于改进灰狼优化算法的径向基(RBF)神经网络评估算法ISSAGWO对飞行器的热防护结构进行可靠性评估.其中,选择灰狼算法作为传统RBF神经网络的优化方法,并对灰狼算法的种群和收敛因子进行优化,以进一步提升飞行器热防护结构响应应力的预测精度.结果表明,与其他优化算法相比,ISSAGWO具有更快的收敛速度,更好的搜索能力,能够更快地得到测试函数的最优值;与其他可靠性评估方法相比,基于ISSAGWO的可靠性评估方法收敛速度优势明显,仅需较少的样本数据便能得到准确的评估结果.上述结果表明,提出的基于改进灰狼优化算法的RBF神经网络能够进行精确的响应应力预测,进而实现效果较好的可靠性评估,能够应用于实际的飞行器热防护结构设计中,可信度较高.
Reliability Analysis of Thermal Protection Structures for Leading Edge Components of Hypersonic Aircraft
A radial basis function(RBF)neural network evaluation algorithm ISSAGWO based on improved grey wolf optimiza-tion algorithm is proposed to address the issue of poor reliability and low efficiency of current reliability evaluation methods for thermal protection structures of hypersonic aircraft.Among them,the Grey Wolf algorithm was selected as the optimization method for tradi-tional RBF neural networks,and the population and convergence factor of the Grey Wolf algorithm were optimized to further improve the accuracy of reliability evaluation results.The results show that compared with other optimization algorithms,ISSAGWO has faster convergence speed,better search ability,and can quickly obtain the optimal value of the test function;Compared with other reliability evaluation methods,the ISSAGWO based reliability evaluation method has a significant advantage in convergence speed,and accurate evaluation results can be obtained with only a small amount of sample data.The above results indicate that the proposed RBF neural network reliability evaluation method based on the improved Grey Wolf optimization algorithm has good performance and can be ap-plied to the reliability evaluation of actual aircraft thermal protection structures with high reliability.

hypersonic aircraftthermal protectionreliability assessmentRBF neural networkGrey Wolf Algorithm

康瑾、董俊言、田恬

展开 >

陕西工业职业技术学院,陕西咸阳 712000

荣盛盟固利新能源科技股份有限公司,北京 102200

高超声速飞行器 热防护 可靠性评估 RBF神经网络 灰狼算法

&&

2023YKYB-004

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(2)
  • 15