首页|基于改进GRU神经网络的综合能源管控系统优化研究

基于改进GRU神经网络的综合能源管控系统优化研究

扫码查看
针对目前综合能源管控系统能耗预测的精度需求,提出一种基于改进GRU神经网络的预测优化方案.首先,考虑到GRU神经网络预测模型中超参数选取的速率直接影响着预测模型的精确度,提出采用鲸鱼优化算法对超参数进行寻优;然后将WOA算法寻优得到的超参数对GRU神经网络进行设置,再利用超参数优化后的GRU神经网络对综合能源负荷进行预测;最后将本算法和传统GRU预测模型及BP神经网络预测模型通过评价指标MAE、MPAE、RMSE进行对比.结果表明,本优化方案平均绝对误差百分比为1.79%,而传统GRU预测模型和BP预测模型的平均绝对误差百分比为3.06%、4.45%.由此得出,采用鲸鱼优化算法对GRU神经网络的改进,使得GRU预测模型更加精准和稳定.
Research on Optimization of Comprehensive Energy Management and Control System Based on Improved GRU Neural Network
A prediction optimization scheme based on improved GRU neural network is proposed to meet the accuracy require-ments of energy consumption prediction in the current comprehensive energy control system.Firstly,considering that the rate of selec-ting hyperparameters in the GRU neural network prediction model directly affects the accuracy of the prediction model,a whale opti-mization algorithm is proposed to optimize the hyperparameters;Then,the hyperparameters obtained by the WO A algorithm are set on the GRU neural network,and the optimized hyperparameters are used to predict the comprehensive energy load;Finally,this algo-rithm is compared with traditional GRU prediction models and BP neural network prediction models through evaluation indicators MAE,MPAE,and RMSE.The results show that the average absolute error percentage of this optimization scheme is 1.79%,while the average absolute error percentages of the traditional GRU prediction model and BP prediction model are 3.06%and 4.45%.From this,it can be concluded that the improvement of the GRU neural network using the whale optimization algorithm makes the GRU pre-diction model more accurate and stable.

GRU neural networkcomprehensive energy management and control systemhyperparameterswhale optimization algorithmsystem optimization

徐珂、解兵、张宸宇、朱鑫要

展开 >

国网江苏省电力有限公司电力科学研究院,南京 211103

GRU神经网络 综合能源管控系统 超参数 鲸鱼优化算法 系统优化

省公司科技项目

J2021121

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(2)
  • 12