首页|融合迁移学习的Bi-LSTM自动翻译系统设计

融合迁移学习的Bi-LSTM自动翻译系统设计

扫码查看
为进一步提升机器翻译模型的英语到汉语的翻译水平,基于迁移学习技术和双向长短时记忆网络Bi-LSTM,提出一种英汉自动翻译模型.其中,通过Gumbel-Tree-LSTM模型对基础的Bi-LSTM翻译模型进行优化,再引入迁移学习中的迁移枢轴参数的思想对模型进行进一步优化.实验结果表明,与其他翻译模型相比,设计的基于迁移学习的改进Bi-LSTM 英汉翻译模型GBi-LSTM的翻译质量更好,在英法和英德两个语料库翻译测试上的BLEU评分和METEOR评分上分别达到了 22.95%,36.02%,24.47%,37.18%;与各个基线模型相比,引入迁移枢轴模型参数后的各个翻译模型的翻译质量均有明显提升.以上结果表明,设计的GBi-LSTM翻译模型翻译性能优秀,能够应用于实际的英汉翻译场景,可行性较高.
Design of Bi LSTM Automatic Translation System Integrating transfer learning
In order to further improve the translation level of machine translation model from English to Chinese,an English Chi-nese automatic translation model is proposed based on transfer learning technology and two-way short-term memory network Bi LSTM.Among them,the basic Bi LSTM translation model is optimized through Gumbel Tree LSTM model,and then the idea of mi-gration pivot parameters in transfer learning is introduced to further optimize the model.The experimental results show that,compared with other translation models,the improved Bi LSTM English Chinese translation model GBi LSTM designed based on transfer learning has better translation quality,and the BLEU score and METEOR score on English French and English German corpus translation tests have reached 22.95%,36.02%,24.47%and 37.18%respectively;Compared with various baseline models,the introduction of transfer pivot model parameters significantly improved the translation quality of each translation model.The above results indicate that the designed GBi-LSTM translation model has excellent translation performance and can be applied to practical English Chinese trans-lation scenarios,with high feasibility.

translation systemBi LSTMtransfer learningmodel optimization

于爱莲、李亚峰

展开 >

咸阳师范学院,陕西咸阳 712000

翻译系统 Bi-LSTM 迁移学习 模型优化

省级新外语建设背景下国际传播人才学科话语能力提升路径研究项目校级项目

2023HZ09072021Z001

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(2)
  • 14