首页|基于深度学习的配电高压操作机器人运动控制技术研究

基于深度学习的配电高压操作机器人运动控制技术研究

扫码查看
随着人工智能的快速发展,体感控制成为机器人人机交互的热点方向,如何快速且准确地识别人体姿态是完成体感控制的一大难点.此次研究将通过改进后的YOLOv4模型检测人体框架,改进后的堆叠沙漏网络模型识别关节点,以提高人体姿态识别的速度和准确率;并针对机器人上半身手臂运动和下半身步态控制的特点,开发关节点映射算法来对机器人进行体感控制,解决配电高压操作机器人进行人机交互时容易摔倒的问题.结果表明,改进后YOLOv4网络检测人体目标的最好结果为84.37%,改进堆叠沙漏网络模型的收敛损失函数为0.096,PCK值为88.3%;研究模型的识别速度均值较CPN模型提高了 21.5 s,表明研究模型在提高人体姿态识别准确率的同时,提高了体感控制的效率,在体感控制领域有一定的研究价值.
Research on Motion Control Technology of Distribution High Voltage Operation Robot Based on Deep Learning
With the rapid development of artificial intelligence,somatosensory control has become a hot topic in robot human-computer interaction.How to quickly and accurately recognize human posture is a major challenge in achieving somatosensory control.This study will use the improved YOLOv4 model to detect the human body framework,and the improved stacked hourglass network model to identify joint points,in order to improve the speed and accuracy of human pose recognition;According to the characteristics of the robot's upper arm movement and lower body gait control,a joint point mapping algorithm is developed to control the robot's Pro-gressive aspect sense,so as to solve the problem that the power distribution high-voltage operating robot is prone to fall when interac-ting with people.The results showed that the best result of detecting human targets using the improved YOLOv4 network was 84.37%,the convergence loss function of the improved stacked hourglass network model was 0.096,and the PCK value was 88.3%;The average recognition speed of the research model increased by 21.5 seconds compared to the CPN model,indicating that the re-search model not only improves the accuracy of human pose recognition,but also improves the efficiency of somatosensory control,which has certain research value in the field of somatosensory control.

YOLOv4stacked hourglassjoint point recognitionrobotsomatosensory control

宋士国、陈二军、焦玉刚

展开 >

陕西德源府谷能源有限公司,陕西榆林 719400

YOLOv4 堆叠沙漏 关节点识别 机器人 体感控制

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(2)
  • 13