首页|基于Transformer的有载分接开关故障诊断研究

基于Transformer的有载分接开关故障诊断研究

扫码查看
针对传统网络捕捉有载分接开关声纹特征之间联系不充分导致故障诊断准确率低的问题,提出了基于Trans-former 神经网络的有载分接开关故障诊断方法.首先采用梅尔频率倒谱系数提取有载分接开关声纹特征,以降低有载分接开关声纹样本的数据维度.然后利用Transformer充分捕捉声纹特征之间的联系并实现有载分接开关故障诊断.实验结果表明,基于Transformer对有载分接开关传动轴松动、触头磨损、卡涩和连挡故障诊断的准确率高达97.5%,并一定程度缩短了诊断的时间.
Research on Fault Diagnosis of On-load Tap Changer Based on Transformer
In response to the insufficient correlation between traditional network captured acoustic features of On-load tap chang-er(OLTC),leading to low accuracy in fault diagnosis,this study proposes a fault diagnosis method for OLTC based on Transformer neural network.Firstly,Mel-frequency cepstral coefficients(MFCC)are utilized to extract acoustic features from OLTC sound sam-ples,reducing the data dimensionality of the samples.Subsequently,the Transformer is employed to comprehensively capture the re-lationships among acoustic features and achieve fault diagnosis for OLTC.Experimental results demonstrate that the Transformer-based approach achieves a high accuracy rate of 97.5%in diagnosing faults such as transmission shaft looseness,contact wear,stick-ing,and gear engagement issues in OLTC.Moreover,it contributes to a certain extent in shortening the diagnostic time.

on-load tap changeracoustic featuresfault diagnosismel-frequency cepstral coefficientstransformer

宋长铭、李岩、王飞、虞旦旦

展开 >

南京理工大学能源与动力工程学院,南京 210094

开封文化艺术职业学院,河南开封 475001

有载分接开关 声纹特征 故障诊断 梅尔频率倒谱系数 Transformer

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(3)
  • 7