首页|基于特征嵌入的无监督火花塞表面缺陷检测

基于特征嵌入的无监督火花塞表面缺陷检测

扫码查看
针对火花塞缺陷检测任务中,现有无监督缺陷检测方法由于缺乏检测目标正常特征的界限以及训练样本的不均衡,导致对于标签,反光,油污等不影响产品使用的伪缺陷会产生误检的问题,提出一种基于特征嵌入的无监督缺陷检测算法.使用加入了特征相似度注意力模块的孪生网络训练特征提取器,在高维空间拉近正常特征样本的分布.采用基于密度信息的特征下采样方法,均衡特征的分布并去除冗余特征.使用K近邻算法对测试集特征进行离群点检测,获得每个特征的异常概率作为异常检测和定位的依据.实验结果表明,该方法在自采的火花塞数据集上取得了平均97.0%的检测准确率和96.9%的定位准确率,与几种同类异常检测方法相比,更适用于当下的火花塞缺陷检测任务.
Unsupervised Spark Plug Surface Defect Detection Based on Feature Embedding
In the spark plug defect detection task,existing unsupervised defect detection methods have problems with false detec-tion due to the lack of boundaries for the normal features of the detection target and the imbalance of training samples.A new unsuper-vised defect detection algorithm based on feature embedding is proposed to address this issue.This method uses a twin network trained with a feature similarity attention module to bring closer the distribution of normal feature samples in high-dimensional space.It em-ploys a feature down-sampling method based on density information to balance the feature distribution and remove redundant features.The K-Nearest Neighbor algorithm is used for outlier detection on the test set features,with the abnormal probability of each feature being used as the basis for abnormal detection and localization.Experimental results show that this method achieves an average detec-tion accuracy of 97.0%and a localization accuracy of 96.9%on a self-collected spark plug dataset,making it more suitable for cur-rent spark plug defect detection tasks compared to several similar methods.

defect detectionunsupervised learningtwin networkattention mechanismfeature fusion

朱政、陈平

展开 >

中北大学信息探测与处理山西省重点实验室,太原 030051

缺陷检测 无监督学习 孪生网络 注意力机制 特征融合

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(3)
  • 9