首页|面向视觉效果的图像色彩智能优化研究

面向视觉效果的图像色彩智能优化研究

扫码查看
为了提高图像的视觉效果,对面向视觉效果的图像色彩智能优化方法进行了研究,提出了一种基于LLLUT的ACE优化算法.首先,对标准自动色彩均衡(ACE)算法进行研究;然后针对标准ACE算法存在的缺点进行改进,以降低其计算复杂度、提高算法对图像均衡处理的速度性能为目的,选择局部线性查找表(LLLUT)法对ACE算法进行优化;最后对基于LLLUT的ACE优化算法的可行性与有效性进行实验测试.实验结果表明:基于LLLUT的ACE优化算法校正后的图像,均值都明显下降并调整到120-130之间,符合人眼的最佳视觉范围.其中,针对光线不足的图像,本算法的均值较标准ACE算法的均值增加了 4.726 5,标准差增加了 2.407 3,熵值增加了 0.084 2;针对曝光过度的图像,本算法的标准差较标准ACE算法的均值增加了 3.137 3,熵值增加了 0.164 2;针对对比度的雾霾图像,本算法的标准差较原始图像提高了 33.745 2,较标准ACE算法的标准差增加了 10.121 9.在进行图像校正时,针对尺寸为300*400的图像,标准ACE算法需要耗费701.223 s,本算法仅需2.727 s;针对尺寸为1 600*1 600的图像,标准ACE算法需要耗费418 247 s,本算法仅需336.414 s.综上可知,提出的基于LLLUT的ACE优化算法具有可行性与有效性,在提高图像视觉效果的同时,有效地提升了算法的计算速度.
Research on image color intelligence optimization for visual effects
In order to improve the visual effect of images,this article studies intelligent optimization methods for visual effect ori-ented image colors and proposes an ACE optimization algorithm based on LLLUT.Firstly,study the standard automatic color balance(ACE)algorithm;Then,in response to the shortcomings of the standard ACE algorithm,improvements were made to reduce its com-putational complexity and improve the speed and performance of the algorithm in image equalization processing.The Local Linear Lookup Table(LLLUT)method was selected to optimize the ACE algorithm;Finally,experimental testing was conducted on the fea-sibility and effectiveness of the LLLUT based ACE optimization algorithm.The experimental results show that the average values of the corrected images using the LLLUT based ACE optimization algorithm significantly decrease and are adjusted between 120 and 130,which is in line with the optimal visual range of the human eye.Among them,for images with insufficient lighting,the mean of our algorithm has increased by 4.726 5,the standard deviation has increased by 2.407 3,and the entropy value has increased by 0.0842 compared to the standard ACE algorithm;For overexposed images,the standard deviation of our algorithm has increased by 3.1373 compared to the mean of the standard ACE algorithm,and the entropy value has increased by 0.164 2;For contrast haze images,the standard deviation of our algorithm has increased by 33.745 2 compared to the original image,and by 10.121 9 compared to the standard ACE algorithm.When performing image correction,for images with a size of 300*400,the standard ACE algorithm re-quires 701.223 seconds,while the algorithm in this article only requires 2.727 seconds;For images with a size of 1 600*1 600,the standard ACE algorithm requires 418 247 s,while the algorithm in this article only requires 336.414 s.In summary,it can be seen that the ACE optimization algorithm based on LLLUT proposed in this article is feasible and effective,which not only improves the visual effect of the image,but also effectively improves the computational speed of the algorithm.

visual effectsimage colorACE algorithm

张坤

展开 >

商洛学院,陕西商洛 726000

视觉效果 图像色彩 ACE算法

陕西省商洛市科技局项目

2020-C-0015

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(3)
  • 15